Diabetes

Serum carotenoids and Pediatric Metabolic Index predict insulin sensitivity in Mexican American children

1.Ogden CL, C. M., Fryar CD, Flegal KM. in N.C.H.S. data brief, no 219 (ed National Center for Health Statistics) (Hyattsville, Maryland, 2015).2.Estrada, E. et al. Children’s Hospital Association consensus statements for comorbidities of childhood obesity. Child Obes. 10, 304–317. https://doi.org/10.1089/chi.2013.0120 (2014).Article 
PubMed 
PubMed Central 

Google Scholar 
3.Gungor, N. K. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 6, 129–143. https://doi.org/10.4274/Jcrpe.1471 (2014).Article 
PubMed 

Google Scholar 
4.Herouvi, D., Karanasios, E., Karayianni, C. & Karavanaki, K. Cardiovascular disease in childhood: The role of obesity. Eur. J. Pediatr. 172, 721–732. https://doi.org/10.1007/s00431-013-1932-8 (2013).Article 
PubMed 

Google Scholar 
5.Poyrazoglu, S., Bas, F. & Darendeliler, F. Metabolic syndrome in young people. Curr. Opin. Endocrinol. Diabetes Obes. 21, 56–63. https://doi.org/10.1097/01.med.0000436414.90240.2c (2014).CAS 
Article 
PubMed 

Google Scholar 
6.Wirix, A. J., Kaspers, P. J., Nauta, J., Chinapaw, M. J. & Kist-van Holthe, J. E. Pathophysiology of hypertension in obese children: A systematic review. Obes. Rev. 16, 831–842. https://doi.org/10.1111/obr.12305 (2015).CAS 
Article 
PubMed 

Google Scholar 
7.Anderson, E. L. et al. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis. PLoS ONE 10, e0140908. https://doi.org/10.1371/journal.pone.0140908 (2015).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
8.Mofid, M. Obstructive sleep apnea: The sleeping giant of the childhood obesity epidemic. JAAPA 27, 27–30. https://doi.org/10.1097/01.J.A.A.0000453860.16582.9c (2014).Article 
PubMed 

Google Scholar 
9.Pulgaron, E. R. & Delamater, A. M. Obesity and type 2 diabetes in children: Epidemiology and treatment. Curr. Diab. Rep. 14, 508. https://doi.org/10.1007/s11892-014-0508-y (2014).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
10.Biro, F. M. & Wien, M. Childhood obesity and adult morbidities. Am. J. Clin. Nutr. 91, 1499S-1505S. https://doi.org/10.3945/ajcn.2010.28701B (2010).ADS 
Article 
PubMed 
PubMed Central 

Google Scholar 
11.Singh, A. S., Mulder, C., Twisk, J. W., van Mechelen, W. & Chinapaw, M. J. Tracking of childhood overweight into adulthood: A systematic review of the literature. Obes. Rev. 9, 474–488. https://doi.org/10.1111/j.1467-789X.2008.00475.x (2008).CAS 
Article 
PubMed 

Google Scholar 
12.Bondia-Pons, I., Ryan, L. & Martinez, J. A. Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem. 68, 701–711. https://doi.org/10.1007/s13105-012-0154-2 (2012).CAS 
Article 
PubMed 

Google Scholar 
13.Karalis, K. P. et al. Mechanisms of obesity and related pathology: Linking immune responses to metabolic stress. FEBS J. 276, 5747–5754. https://doi.org/10.1111/j.1742-4658.2009.07304.x (2009).CAS 
Article 
PubMed 

Google Scholar 
14.Falkner, B. & Cossrow, N. D. Prevalence of metabolic syndrome and obesity-associated hypertension in the racial ethnic minorities of the United States. Curr. Hypertens. Rep. 16, 449. https://doi.org/10.1007/s11906-014-0449-5 (2014).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
15.Aguilera, C. M., Olza, J. & Gil, A. Genetic susceptibility to obesity and metabolic syndrome in childhood. Nutr. Hosp. 28(Suppl 5), 44–55. https://doi.org/10.3305/nh.2013.28.sup5.6917 (2013).CAS 
Article 
PubMed 

Google Scholar 
16.Hill, J. O., Wyatt, H. R. & Peters, J. C. Energy balance and obesity. Circulation 126, 126–132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213 (2012).Article 
PubMed 
PubMed Central 

Google Scholar 
17.Bonet, M. L., Canas, J. A., Ribot, J. & Palou, A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch. Biochem. Biophys. 572, 112–125. https://doi.org/10.1016/j.abb.2015.02.022 (2015).CAS 
Article 
PubMed 

Google Scholar 
18.Bonet, M. L., Canas, J. A., Ribot, J. & Palou, A. Carotenoids in adipose tissue biology and obesity. Subcell Biochem. 79, 377–414. https://doi.org/10.1007/978-3-319-39126-7_15 (2016).CAS 
Article 
PubMed 

Google Scholar 
19.Edge, R., McGarvey, D. J. & Truscott, T. G. The carotenoids as anti-oxidants—A review. J. Photochem. Photobiol. B 41, 189–200 (1997).CAS 
Article 

Google Scholar 
20.Fiedor, J. & Burda, K. Potential role of carotenoids as anti-oxidants in human health and disease. Nutrients 6, 466–488. https://doi.org/10.3390/nu6020466 (2014).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
21.Kim, J. H. et al. The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/P.T.E.N./Akt and NF-kappaB-inducing kinase pathways: Role of H(2)O(2) in NF-kappaB activation. Free Radic Biol Med 45, 885–896. https://doi.org/10.1016/j.freeradbiomed.2008.06.019 (2008).CAS 
Article 
PubMed 

Google Scholar 
22.Galano, A., Vargas, R. & Martinez, A. Carotenoids can act as anti-oxidants by oxidizing the superoxide radical anion. Phys. Chem. Chem. Phys. 12, 193–200. https://doi.org/10.1039/b917636e (2010).CAS 
Article 
PubMed 

Google Scholar 
23.Gordon, M. H. Significance of dietary anti-oxidants for health. Int. J. Mol. Sci. 13, 173–179. https://doi.org/10.3390/ijms13010173 (2012).CAS 
Article 
PubMed 

Google Scholar 
24.U.S. Department of Health and Human Services. 2015–2020 dietary guidelines for Americans. 8th ed. https://health.gov/dietaryguidelines/2015/guidelines/ (U.S. Department of Health and Human Services; U.S. Department of Agriculture, Washington, DC, 2015).25.Herrick, K. A., Rossen, L. M., Nielsen, S. J., Branum, A. M. & Ogden, C. L. Fruit consumption by youth in the United States. Pediatrics 136, 664–671. https://doi.org/10.1542/peds.2015-1709 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
26.Lorson, B. A., Melgar-Quinonez, H. R. & Taylor, C. A. Correlates of fruit and vegetable intakes in U.S. children. J. Am. Diet Assoc. 109, 474–478. https://doi.org/10.1016/j.jada.2008.11.022 (2009).Article 
PubMed 

Google Scholar 
27.Di Noia, J. & Byrd-Bredbenner, C. Determinants of fruit and vegetable intake in low-income children and adolescents. Nutr. Rev. 72, 575–590. https://doi.org/10.1111/nure.12126 (2014).Article 
PubMed 

Google Scholar 
28.Ford, E. S., Gillespie, C., Ballew, C., Sowell, A. & Mannino, D. M. Serum carotenoid concentrations in U.S. children and adolescents. Am. J. Clin. Nutr. 76, 818–827 (2002).CAS 
Article 

Google Scholar 
29.Britton, G., Liaaen-Jensen, S. & Pfander, H. Carotenoids Handbook (Birkhäuser Verlag, Basel, 2004).
Google Scholar 
30.Milani, A., Basirnejad, M., Shahbazi, S. & Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol. 174, 1290–1324. https://doi.org/10.1111/bph.13625 (2017).CAS 
Article 
PubMed 

Google Scholar 
31.Stahl, W. & Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta 1740, 101–107. https://doi.org/10.1016/j.bbadis.2004.12.006 (2005).CAS 
Article 
PubMed 

Google Scholar 
32.Mares, J. Lutein and zeaxanthin isomers in eye health and disease. Annu. Rev. Nutr. 36, 571–602. https://doi.org/10.1146/annurev-nutr-071715-051110 (2016).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
33.Di Mascio, P., Kaiser, S. & Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274, 532–538 (1989).Article 

Google Scholar 
34.Bohn, T. et al. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201600685 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
35.Beydoun, M. A., Nalls, M. A., Canas, J. A., Evans, M. K. & Zonderman, A. B. Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African–American adults. Br. J. Nutr. 112, 992–1003. https://doi.org/10.1017/S0007114514001706 (2014).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
36.Borel, P. Genetic variations involved in interindividual variability in carotenoid status. Mol. Nutr. Food Res. 56, 228–240. https://doi.org/10.1002/mnfr.201100322 (2012).CAS 
Article 
PubMed 

Google Scholar 
37.Borel, P., Desmarchelier, C., Nowicki, M. & Bott, R. A combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary beta-carotene bioavailability in healthy men. J. Nutr. 145, 1740–1747. https://doi.org/10.3945/jn.115.212837 (2015).CAS 
Article 
PubMed 

Google Scholar 
38.Borel, P. et al. Interindividual variability of lutein bioavailability in healthy men: Characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am. J. Clin. Nutr. 100, 168–175. https://doi.org/10.3945/ajcn.114.085720 (2014).CAS 
Article 
PubMed 

Google Scholar 
39.Farook, V. S. et al. Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children. Am. J. Clin. Nutr. https://doi.org/10.3945/ajcn.116.144006 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
40.Fowler, S. P. et al. Genetic epidemiology of cardiometabolic risk factors and their clustering patterns in Mexican American children and adolescents: The SAFARI Study. Hum. Genet. 132, 1059–1071. https://doi.org/10.1007/s00439-013-1315-2 (2013).Article 
PubMed 

Google Scholar 
41.Smith, C. & Fila, S. Comparison of the kid’s block food frequency questionnaire to the 24-hour recall in urban native American youth. Am. J. Hum. Biol. 18, 706–709. https://doi.org/10.1002/ajhb.20475 (2006).Article 
PubMed 

Google Scholar 
42.Cullen, K. W., Watson, K. & Zakeri, I. Relative reliability and validity of the Block Kids Questionnaire among youth aged 10 to 17 years. J. Am. Diet Assoc. 108, 862–866. https://doi.org/10.1016/j.jada.2008.02.015 (2008).CAS 
Article 
PubMed 

Google Scholar 
43.Talegawkar, S. A. et al. Carotenoid intakes, assessed by food-frequency questionnaires (FFQs), are associated with serum carotenoid concentrations in the Jackson Heart Study: Validation of the Jackson Heart Study Delta N.I.R.I. Adult FFQs. Public Health Nutr. 11, 989–997. https://doi.org/10.1017/S1368980007001310 (2008).Article 
PubMed 

Google Scholar 
44.Prasad, M. et al. Carotenoid intake and serum concentration in young Finnish children and their relation with fruit and vegetable consumption. Nutrients https://doi.org/10.3390/nu10101533 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
45.Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211. https://doi.org/10.1086/301844 (1998).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
46.Hernandez, M. J. G. et al. Pediatric visceral adiposity index adaptation correlates with HOMA-IR, Matsuda, and transaminases. Endocr. Pract. 24, 294–301. https://doi.org/10.4158/EP-2017-0086 (2018).Article 
PubMed 

Google Scholar 
47.Bejamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. SerB 57, 289–300 (1995).MathSciNet 
MATH 

Google Scholar 
48.D’Adamo, C. R. et al. A common variant in the SETD7 gene predicts serum lycopene concentrations. Nutrients 8, 82. https://doi.org/10.3390/nu8020082 (2016).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
49.Gueguen, S. et al. Genetic and environmental contributions to serum retinol and alpha-tocopherol concentrations: The Stanislas Family Study. Am. J. Clin. Nutr. 81, 1034–1044 (2005).CAS 
Article 

Google Scholar 
50.Tremblay, B. L., Guenard, F., Lamarche, B., Perusse, L. & Vohl, M. C. Genetic and common environmental contributions to familial resemblances in plasma carotenoid concentrations in healthy families. Nutrients https://doi.org/10.3390/nu10081002 (2018).Article 
PubMed 
PubMed Central 

Google Scholar 
51.Hogg, R. E. et al. Heritability of the spatial distribution and peak density of macular pigment: A classical twin study. Eye 26, 1217–1225. https://doi.org/10.1038/eye.2012.98 (2012).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
52.Clevidence, B. A. & Bieri, J. G. Association of carotenoids with human plasma lipoproteins. Methods Enzymol. 214, 33–46 (1993).CAS 
Article 

Google Scholar 
53.van Kappel, A. L. et al. Serum carotenoids as biomarkers of fruit and vegetable consumption in the New York Women’s Health Study. Public Health Nutr. 4, 829–835. https://doi.org/10.1079/phn2000115 (2001).Article 
PubMed 

Google Scholar 
54.Brady, W. E., Mares-Perlman, J. A., Bowen, P. & Stacewicz-Sapuntzakis, M. Human serum carotenoid concentrations are related to physiologic and lifestyle factors. J. Nutr. 126, 129–137. https://doi.org/10.1093/jn/126.1.129 (1996).CAS 
Article 
PubMed 

Google Scholar 
55.Morgan, E. H., Graham, M. L., Marshall, G. A., Hanson, K. L. & Seguin-Fowler, R. A. Serum carotenoids are strongly associated with dermal carotenoids but not self-reported fruit and vegetable intake among overweight and obese women. Int. J. Behav. Nutr. Phys. Act. 16, 104. https://doi.org/10.1186/s12966-019-0869-3 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
56.Aune, D. et al. Dietary compared with blood concentrations of carotenoids and breast cancer risk: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 96, 356–373. https://doi.org/10.3945/ajcn.112.034165 (2012).CAS 
Article 
PubMed 

Google Scholar 
57.Burri, B. J., Neidlinger, T. R. & Clifford, A. J. Serum carotenoid depletion follows first-order kinetics in healthy adult women fed naturally low carotenoid diets. J. Nutr. 131, 2096–2100. https://doi.org/10.1093/jn/131.8.2096 (2001).CAS 
Article 
PubMed 

Google Scholar 
58.Ben Amara, N. et al. Independent positive association of plasma beta-carotene concentrations with adiponectin among non-diabetic obese subjects. Eur. J. Nutr. 54, 447–454. https://doi.org/10.1007/s00394-014-0728-6 (2015).CAS 
Article 
PubMed 

Google Scholar 
59.Han, G. M., Soliman, G. A., Meza, J. L., Islam, K. M. & Watanabe-Galloway, S. The influence of BMI on the association between serum lycopene and the metabolic syndrome. Br. J. Nutr. 115, 1292–1300. https://doi.org/10.1017/S0007114516000179 (2016).CAS 
Article 
PubMed 

Google Scholar 
60.Gunanti, I. R., Marks, G. C., Al-Mamun, A. & Long, K. Z. Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican–American children. J. Nutr. 144, 489–495. https://doi.org/10.3945/jn.113.183137 (2014).CAS 
Article 
PubMed 

Google Scholar 
61.Asplund, K. Antioxidant vitamins in the prevention of cardiovascular disease: A systematic review. J. Intern. Med. 251, 372–392 (2002).CAS 
Article 

Google Scholar 
62.Cicero, A. F. G. & Colletti, A. Effects of carotenoids on health: Are all the same? results from clinical trials. Curr. Pharm. Des. 23, 2422–2427. https://doi.org/10.2174/1381612823666170207095459 (2017).CAS 
Article 
PubMed 

Google Scholar 
63.Goncalves, A. & Amiot, M. J. Fat-soluble micronutrients and metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 20, 492–497. https://doi.org/10.1097/MCO.0000000000000412 (2017).CAS 
Article 
PubMed 
PubMed Central 

Google Scholar 
64.Henriksen, E. J., Diamond-Stanic, M. K. & Marchionne, E. M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 51, 993–999. https://doi.org/10.1016/j.freeradbiomed.2010.12.005 (2011).CAS 
Article 
PubMed 

Google Scholar 
65.Kaulmann, A. & Bohn, T. Carotenoids, inflammation, and oxidative stress–implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res. 34, 907–929. https://doi.org/10.1016/j.nutres.2014.07.010 (2014).CAS 
Article 
PubMed 

Google Scholar 
66.Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 120, 681–699. https://doi.org/10.1016/j.fct.2018.07.060 (2018).CAS 
Article 
PubMed 

Google Scholar 
67.Sluijs, I. et al. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 25, 376–381. https://doi.org/10.1016/j.numecd.2014.12.008 (2015).CAS 
Article 
PubMed 

Google Scholar 
68.Beydoun, M. A. et al. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 77, 32–45. https://doi.org/10.1093/nutrit/nuy044 (2019).Article 
PubMed 

Google Scholar 
69.Coyne, T. et al. Diabetes mellitus and serum carotenoids: Findings of a population-based study in Queensland, Australia. Am. J. Clin. Nutr. 82, 685–693 (2005).CAS 
Article 

Google Scholar 
70.Sugiura, M., Nakamura, M., Ogawa, K., Ikoma, Y. & Yano, M. High-serum carotenoids associated with lower risk for developing type 2 diabetes among Japanese subjects: Mikkabi cohort study. BMJ Open Diabetes Res. Care 3, e000147. https://doi.org/10.1136/bmjdrc-2015-000147 (2015).Article 
PubMed 
PubMed Central 

Google Scholar 
71.Olson, J. A. Absorption, transport, and metabolism of carotenoids in humans. Pure Appl. Chem. 66, 1011–1016 (1994).CAS 
Article 

Google Scholar 
72.Reboul, E. Mechanisms of carotenoid intestinal absorption: Where do we stand?. Nutrients https://doi.org/10.3390/nu11040838 (2019).Article 
PubMed 
PubMed Central 

Google Scholar 
73.Lyu, Y., Wu, L., Wang, F., Shen, X. & Lin, D. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp. Biol. Med. 243, 613–620. https://doi.org/10.1177/1535370218763760 (2018).CAS 
Article 

Google Scholar 
74.Canas, J. A. et al. Insulin resistance and adiposity in relation to serum beta-carotene levels. J. Pediatr. 161(58–64), e51-52. https://doi.org/10.1016/j.jpeds.2012.01.030 (2012).CAS 
Article 

Google Scholar 
75.Maiani, G. et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 53(Suppl 2), S194-218. https://doi.org/10.1002/mnfr.200800053 (2009).Article 
PubMed 

Google Scholar 
76.Jaswir, I., Noviendri, D., Hasrini, R. F. & Octavianti, F. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5, 7119–7131. https://doi.org/10.5897/JMPRx11.011 (2011).CAS 
Article 

Google Scholar 
77.Clinton, S. K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 56, 35–51. https://doi.org/10.1111/j.1753-4887.1998.tb01691.x (1998).CAS 
Article 
PubMed 

Google Scholar 
78.Borel, P. et al. Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J Nutr 137, 2653–2659. https://doi.org/10.1093/jn/137.12.2653 (2007).CAS 
Article 
PubMed 

Google Scholar 
79.Borel, P. & Desmarchelier, C. Genetic variations associated with vitamin A status and vitamin A bioavailability. Nutrients https://doi.org/10.3390/nu9030246 (2017).Article 
PubMed 
PubMed Central 

Google Scholar 
80.Moran, N. E., Erdman, J. W. & Clinton, S. K. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution. Arch. Biochem. Biophys. 539, 171–180. https://doi.org/10.1016/j.abb.2013.06.017 (2013).CAS 
Article 
PubMed 

Google Scholar 

Via Source link

Most Popular

Safety Health News Provides information on HEALTH NEWS, HEALTH CARE, WOMEN’S HEALTH, KID’S HEALTH, MEN’S HEALTH, DIABETES & DEALS NEWS

All About information only. Please consult your Doctor for any illness.

Copyright © 2020 Safety Health News. Powered by Wordpress.

To Top