Diabetes

Effects of maternal and paternal exercise on offspring metabolism

1.Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).CAS 
PubMed 

Google Scholar 
2.Sales, V. M., Ferguson-Smith, A. C. & Patti, M. E. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 25, 559–571 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
3.Sharp, G. C. & Lawlor, D. A. Paternal impact on the life course development of obesity and type 2 diabetes in the offspring. Diabetologia 62, 1802–1810 (2019).PubMed 
PubMed Central 

Google Scholar 
4.Chen, L. et al. Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism 64, 338–347 (2015).CAS 
PubMed 

Google Scholar 
5.Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 543–551 (2013).PubMed 

Google Scholar 
6.Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).CAS 
PubMed 

Google Scholar 
7.Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. & Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62, 1789–1801 (2019).PubMed 
PubMed Central 

Google Scholar 
8.Gaillard, R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur. J. Epidemiol. 30, 1141–1152 (2015).PubMed 
PubMed Central 

Google Scholar 
9.Desyibelew, H. D. & Dadi, A. F. Burden and determinants of malnutrition among pregnant women in Africa: a systematic review and meta-analysis. PLoS ONE 14, e0221712 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
10.Lumey, L. H., Khalangot, M. D. & Vaiserman, A. M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: a retrospective cohort study. Lancet Diabetes Endocrinol. 3, 787–794 (2015).CAS 
PubMed 

Google Scholar 
11.Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).CAS 
PubMed 

Google Scholar 
12.Roseboom, T., de Rooij, S. & Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491 (2006).PubMed 

Google Scholar 
13.Boney, C. M., Verma, A., Tucker, R. & Vohr, B. R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115, e290–e296 (2005).PubMed 
PubMed Central 

Google Scholar 
14.Reynolds, R. M. et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. Br. Med. J. 347, f4539 (2013).
Google Scholar 
15.Lahti-Pulkkinen, M. et al. Consequences of being overweight or obese during pregnancy on diabetes in the offspring: a record linkage study in Aberdeen, Scotland. Diabetologia 62, 1412–1419 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
16.Stothard, K. J., Tennant, P. W., Bell, R. & Rankin, J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. J. Am. Med. Assoc. 301, 636–650 (2009).CAS 

Google Scholar 
17.Kaar, J. L. et al. Maternal obesity, gestational weight gain, and offspring adiposity: the exploring perinatal outcomes among children study. J. Pediatr. 165, 509–515 (2014).PubMed 
PubMed Central 

Google Scholar 
18.Davenport, M. H. et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br. J. Sports Med. 52, 1367–1375 (2018).PubMed 

Google Scholar 
19.Wang, J., Wen, D., Liu, X. & Liu, Y. Impact of exercise on maternal gestational weight gain: an updated meta-analysis of randomized controlled trials. Med. (Baltim.) 98, e16199 (2019).
Google Scholar 
20.Beetham, K. S. et al. The effects of vigorous intensity exercise in the third trimester of pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth 19, 281 (2019).PubMed 
PubMed Central 

Google Scholar 
21.Ming, W. K. et al. The effect of exercise during pregnancy on gestational diabetes mellitus in normal-weight women: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 440 (2018).PubMed 
PubMed Central 

Google Scholar 
22.Moyer, C., Reoyo, O. R. & May, L. The influence of prenatal exercise on offspring health: a review. Clin. Med. Insights Women’s Health 9, 37–42 (2016).PubMed 

Google Scholar 
23.Wiebe, H. W., Boulé, N. G., Chari, R. & Davenport, M. H. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet. Gynecol. 125, 1185–1194 (2015).PubMed 

Google Scholar 
24.Clapp, J. F. III, Lopez, B. & Harcar-Sevcik, R. Neonatal behavioral profile of the offspring of women who continued to exercise regularly throughout pregnancy. Am. J. Obstet. Gynecol. 180, 91–94 (1999).PubMed 

Google Scholar 
25.May, L. E., Scholtz, S. A., Suminski, R. & Gustafson, K. M. Aerobic exercise during pregnancy influences infant heart rate variability at one month of age. Early Hum. Dev. 90, 33–38 (2014).PubMed 

Google Scholar 
26.McMillan, A. G., May, L. E., Gaines, G. G., Isler, C. & Kuehn, D. Effects of aerobic exercise during pregnancy on 1-month infant neuromotor skills. Med. Sci. Sports Exerc. 51, 1671–1676 (2019).PubMed 

Google Scholar 
27.Patel, N. et al. Infant adiposity following a randomised controlled trial of a behavioural intervention in obese pregnancy. Int. J. Obes. (Lond.) 41, 1018–1026 (2017).CAS 

Google Scholar 
28.van Poppel, M. N. M. et al. A reduction in sedentary behaviour in obese women during pregnancy reduces neonatal adiposity: the DALI randomised controlled trial. Diabetologia 62, 915–925 (2019). This study demonstrates that aerobic physical activity together with a healthful diet during pregnancy decreases fat in newborn humans.PubMed 
PubMed Central 

Google Scholar 
29.Mourtakos, S. P. et al. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5,125 children. BMC Pregnancy Childbirth 15, 66 (2015). Through analysis of 5,125 children, this study shows that moderate exercise during pregnancy decreases the risk of offspring being overweight during childhood.PubMed 
PubMed Central 

Google Scholar 
30.Chiavaroli, V. et al. Exercise in pregnancy: 1-year and 7-year follow-ups of mothers and offspring after a randomized controlled trial. Sci. Rep. 8, 12915 (2018).PubMed 
PubMed Central 

Google Scholar 
31.Chen, H., Simar, D., Lambert, K., Mercier, J. & Morris, M. J. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149, 5348–5356 (2008).CAS 
PubMed 

Google Scholar 
32.Masuyama, H. & Hiramatsu, Y. Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153, 2823–2830 (2012).CAS 
PubMed 

Google Scholar 
33.Stanford, K. I. et al. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64, 427–433 (2015). This study investigated the best time for exercise training during pregnancy and shows that maternal exercise in mice before and during pregnancy improves metabolic health in male offspring.CAS 
PubMed 

Google Scholar 
34.Stanford, K. I. et al. Maternal exercise improves glucose tolerance in female offspring. Diabetes 66, 2124–2136 (2017). This study reveals that maternal exercise in mice improves systemic metabolism and liver function in female offspring.CAS 
PubMed 
PubMed Central 

Google Scholar 
35.Isganaitis, E. et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes 58, 1192–1200 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
36.Jimenez-Chillaron, J. C. et al. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes 54, 702–711 (2005).CAS 
PubMed 

Google Scholar 
37.Raipuria, M., Bahari, H. & Morris, M. J. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS ONE 10, e0120980 (2015).PubMed 
PubMed Central 

Google Scholar 
38.Laker, R. C. et al. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605–1611 (2014). This study shows that maternal exercise in mice prevents epigenetic alterations caused by maternal overnutrition in muscles in female offspring.CAS 
PubMed 
PubMed Central 

Google Scholar 
39.Graus-Nunes, F. et al. Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition 31, 380–387 (2015).CAS 
PubMed 

Google Scholar 
40.Hartil, K. et al. Maternal substrate utilization programs the development of the metabolic syndrome in male mice exposed to high fat in utero. Pediatr. Res. 66, 368–373 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
41.Vega, C. C. et al. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int. J. Obes. (Lond.) 39, 712–719 (2015).CAS 

Google Scholar 
42.Quiclet, C. et al. Maternal exercise modifies body composition and energy substrates handling in male offspring fed a high-fat/high-sucrose diet. J. Physiol. (Lond.) 595, 7049–7062 (2017).CAS 

Google Scholar 
43.Perng, W., Oken, E. & Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 62, 1779–1788 (2019).PubMed 

Google Scholar 
44.Ou, X. H., Zhu, C. C. & Sun, S. C. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J. Cell. Physiol. 234, 7847–7855 (2019).CAS 
PubMed 

Google Scholar 
45.Zhang, Q. et al. A maternal high-fat diet induces DNA methylation changes that contribute to glucose intolerance in offspring. Front. Endocrinol. (Lausanne) 10, 871 (2019).
Google Scholar 
46.Sasaki, H. et al. Forced rather than voluntary exercise entrains peripheral clocks via a corticosterone/noradrenaline increase in PER2:LUC mice. Sci. Rep. 6, 27607 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
47.Svensson, M. et al. Forced treadmill exercise can induce stress and increase neuronal damage in a mouse model of global cerebral ischemia. Neurobiol. Stress 5, 8–18 (2016).PubMed 
PubMed Central 

Google Scholar 
48.Kim, Y. J., Kim, H. J., Lee, W. J. & Seong, J. K. A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model. Lab. Anim. Res. 36, 3 (2020).PubMed 
PubMed Central 

Google Scholar 
49.Zheng, J. et al. Maternal and paternal exercise regulate offspring metabolic health and beta cell phenotype. BMJ Open Diabetes Res. Care 8, e000890 (2020).PubMed 
PubMed Central 

Google Scholar 
50.Carter, L. G. et al. Perinatal exercise improves glucose homeostasis in adult offspring. Am. J. Physiol. Endocrinol. Metab. 303, E1061–E1068 (2012). This article demonstrates that maternal exercise in mice increases insulin-stimulated glucose uptake in the soleus and adipose tissues in female offspring, thus improving their metabolic health.CAS 
PubMed 
PubMed Central 

Google Scholar 
51.Carter, L. G., Qi, N. R., De Cabo, R. & Pearson, K. J. Maternal exercise improves insulin sensitivity in mature rat offspring. Med. Sci. Sports Exerc. 45, 832–840 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
52.Sheldon, R. D. et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J. Hepatol. 64, 171–178 (2016).PubMed 

Google Scholar 
53.Quiclet, C. et al. Short-term and long-term effects of submaximal maternal exercise on offspring glucose homeostasis and pancreatic function. Am. J. Physiol. Endocrinol. Metab. 311, E508–E518 (2016).PubMed 

Google Scholar 
54.Bayol, S. A., Simbi, B. H. & Stickland, N. C. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J. Physiol. (Lond.) 567, 951–961 (2005).CAS 

Google Scholar 
55.Isganaitis, E. et al. Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 63, 688–700 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
56.Fernandez-Twinn, D. S. et al. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci. Rep. 7, 44650 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
57.Falcão-Tebas, F., Marin, E.C., Kuang, J., Bishop, D.J. & McConell, G.K. Maternal exercise attenuates the lower skeletal muscle glucose uptake and insulin secretion caused by paternal obesity in female adult rat offspring. J. Physiol. (Lond.) https://doi.org/10.1113/JP279582 (2020).58.Son, J. S. et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci. Adv. 6, eaaz0359 (2020). In this study, analysis of methylation changes in the Prdm16 promoter in adipose tissue indicates that maternal exercise in mice improves BAT and beige adipose tissue function, thus protecting offspring from obesity.PubMed 
PubMed Central 

Google Scholar 
59.Eclarinal, J. D. et al. Maternal exercise during pregnancy promotes physical activity in adult offspring. FASEB J. 30, 2541–2548 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
60.Moser, V. C. et al. Impacts of maternal diet and exercise on offspring behavior and body weights. Neurotoxicol. Teratol. 63, 46–50 (2017).CAS 
PubMed 

Google Scholar 
61.Baron, A. D., Brechtel, G., Wallace, P. & Edelman, S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, E769–E774 (1988).CAS 
PubMed 

Google Scholar 
62.Gniuli, D. et al. Effects of high-fat diet exposure during fetal life on type 2 diabetes development in the progeny. J. Lipid Res. 49, 1936–1945 (2008).CAS 
PubMed 

Google Scholar 
63.Seale, P. & Lazar, M. A. Brown fat in humans: turning up the heat on obesity. Diabetes 58, 1482–1484 (2009).CAS 
PubMed 
PubMed Central 

Google Scholar 
64.Beeson, J. H. et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol. Metab. 16, 35–44 (2018).CAS 
PubMed 
PubMed Central 

Google Scholar 
65.Saiyin, T. et al. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J. Cell. Mol. Med. 23, 5553–5565 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
66.Herring, A. et al. Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J. 26, 117–128 (2012).CAS 
PubMed 

Google Scholar 
67.Sferruzzi-Perri, A. N. & Camm, E. J. The programming power of the placenta. Front. Physiol. 7, 33 (2016).PubMed 
PubMed Central 

Google Scholar 
68.Petroff, M. G., Phillips, T. A., Ka, H., Pace, J. L. & Hunt, J. S. Isolation and culture of term human trophoblast cells. Methods Mol. Med. 121, 203–217 (2006).PubMed 

Google Scholar 
69.Clapp, J. F. III, Kim, H., Burciu, B. & Lopez, B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am. J. Obstet. Gynecol. 183, 1484–1488 (2000). In this study, analysis of pregnant women who performed weight-bearing aerobic exercise indicates that maternal exercise is associated with normal foetoplacental growth, thus decreasing the risk of low-birth-weight outcomes.PubMed 

Google Scholar 
70.Ramírez-Vélez, R., Bustamante, J., Czerniczyniec, A., Aguilar de Plata, A. C. & Lores-Arnaiz, S. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta. PLoS ONE 8, e80225 (2013).PubMed 
PubMed Central 

Google Scholar 
71.Brett, K. E., Ferraro, Z. M., Holcik, M. & Adamo, K. B. Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta. Placenta 36, 204–212 (2015).CAS 
PubMed 

Google Scholar 
72.Hutchinson, K. A. et al. Physical activity during pregnancy is associated with increased placental FATP4 protein expression. Reprod. Sci. 27, 1909–1919 (2020).PubMed 

Google Scholar 
73.Howell, K. R. & Powell, T. L. Effects of maternal obesity on placental function and fetal development. Reproduction 153, R97–R108 (2017).CAS 
PubMed 

Google Scholar 
74.Myatt, L. & Maloyan, A. Obesity and placental function. Semin. Reprod. Med. 34, 42–49 (2016).CAS 
PubMed 

Google Scholar 
75.Son, J. S. et al. Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. J. Physiol. (Lond.) 597, 3333–3347 (2019).CAS 

Google Scholar 
76.Mangwiro, Y. T. M. et al. Maternal exercise in rats upregulates the placental insulin-like growth factor system with diet- and sex-specific responses: minimal effects in mothers born growth restricted. J. Physiol. (Lond.) 596, 5947–5964 (2018).CAS 

Google Scholar 
77.Fragoso, J. et al. Maternal physical activity-induced adaptive transcriptional response in brain and placenta of mothers and rat offspring. J. Dev. Orig. Health Dis. 11, 108–117 (2020).CAS 
PubMed 

Google Scholar 
78.Mangwiro, Y. T. et al. Maternal exercise and growth restriction in rats alters placental angiogenic factors and blood space area in a sex-specific manner. Placenta 74, 47–54 (2018).CAS 
PubMed 

Google Scholar 
79.Berti, C. et al. Pregnancy and infants’ outcome: nutritional and metabolic implications. Crit. Rev. Food Sci. Nutr. 56, 82–91 (2016).CAS 
PubMed 

Google Scholar 
80.Lin, G. et al. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 46, 1605–1623 (2014).CAS 
PubMed 

Google Scholar 
81.Mangwiro, Y. T. M. et al. Exercise initiated during pregnancy in rats born growth restricted alters placental mTOR and nutrient transporter expression. J. Physiol. (Lond.) 597, 1905–1918 (2019).CAS 

Google Scholar 
82.Song, L. et al. Prenatal exercise reverses high-fat-diet-induced placental alterations and alters male fetal hypothalamus during late gestation in rats. Biol. Reprod. 102, 705–716 (2020).PubMed 

Google Scholar 
83.Harris, J. E. et al. Exercise-induced 3′-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat. Metab. 2, 678–687 (2020). This study proposes oligosaccharide 3′-sialyllactose in exercise-trained mothers’ milk as an important mediator improving glucose metabolic health and cardiac function in offspring.CAS 
PubMed 

Google Scholar 
84.Neri, C. & Edlow, A. G. Effects of maternal obesity on fetal programming: molecular approaches. Cold Spring Harb. Perspect. Med. 6, a026591 (2015).PubMed 

Google Scholar 
85.Marco, A., Kisliouk, T., Tabachnik, T., Weller, A. & Meiri, N. DNA CpG methylation (5-methylcytosine) and its derivative (5-hydroxymethylcytosine) alter histone posttranslational modifications at the Pomc promoter, affecting the impact of perinatal diet on leanness and obesity of the offspring. Diabetes 65, 2258–2267 (2016).CAS 
PubMed 

Google Scholar 
86.de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2015).PubMed 
PubMed Central 

Google Scholar 
87.Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).CAS 
PubMed 

Google Scholar 
88.Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).CAS 
PubMed 
PubMed Central 

Google Scholar 
89.Lucas, E. S. & Watkins, A. J. The long-term effects of the periconceptional period on embryo epigenetic profile and phenotype; the paternal role and his contribution, and how males can affect offspring’s phenotype/epigenetic profile. Adv. Exp. Med. Biol. 1014, 137–154 (2017).CAS 
PubMed 

Google Scholar 
90.Li, L., Law, C., Lo Conte, R. & Power, C. Intergenerational influences on childhood body mass index: the effect of parental body mass index trajectories. Am. J. Clin. Nutr. 89, 551–557 (2009).CAS 
PubMed 

Google Scholar 
91.Bakos, H. W., Henshaw, R. C., Mitchell, M. & Lane, M. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil. Steril. 95, 1700–1704 (2011).PubMed 

Google Scholar 
92.Chavarro, J. E. et al. Trans-fatty acid levels in sperm are associated with sperm concentration among men from an infertility clinic. Fertil. Steril. 95, 1794–1797 (2011).CAS 
PubMed 

Google Scholar 
93.Kort, H. I. et al. Impact of body mass index values on sperm quantity and quality. J. Androl. 27, 450–452 (2006).PubMed 

Google Scholar 
94.Bodden, C., Hannan, A. J. & Reichelt, A. C. Diet-induced modification of the sperm epigenome programs metabolism and behavior. Trends Endocrinol. Metab. 31, 131–149 (2020).CAS 
PubMed 

Google Scholar 
95.Bakos, H. W., Thompson, J. G., Feil, D. & Lane, M. Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int. J. Androl. 31, 518–526 (2008).CAS 
PubMed 

Google Scholar 
96.Bertolini, M. et al. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 58, 973–994 (2002).PubMed 

Google Scholar 
97.Seli, E., Gardner, D. K., Schoolcraft, W. B., Moffatt, O. & Sakkas, D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil. Steril. 82, 378–383 (2004).PubMed 

Google Scholar 
98.Su, L. & Patti, M. E. Paternal nongenetic intergenerational transmission of metabolic disease risk. Curr. Diab. Rep. 19, 38 (2019).PubMed 

Google Scholar 
99.Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499 (2016).CAS 
PubMed 

Google Scholar 
100.Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016). This article demonstrates that tsRNAs present in paternal sperm are capable of directing the metabolic programming of F1 offspring, as a result of the dietary status of the F0 fathers.CAS 
PubMed 

Google Scholar 
101.Sharma, U. & Rando, O. J. Metabolic inputs into the epigenome. Cell Metab. 25, 544–558 (2017).CAS 
PubMed 

Google Scholar 
102.Binder, N. K., Hannan, N. J. & Gardner, D. K. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS ONE 7, e52304 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
103.Lambrot, R. et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
104.Watkins, A. J. & Sinclair, K. D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 306, H1444–H1452 (2014).CAS 
PubMed 

Google Scholar 
105.McPherson, N. O., Lane, M., Sandeman, L., Owens, J. A. & Fullston, T. An exercise-only intervention in obese fathers restores glucose and insulin regulation in conjunction with the rescue of pancreatic islet cell morphology and microRNA expression in male offspring. Nutrients 9, 122 (2017).PubMed Central 

Google Scholar 
106.McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015). This study shows that exercise training in obese male mice normalizes the X-linked miRNA profile in sperm and increases insulin sensitivity in female offspring.
Google Scholar 
107.Stanford, K. I. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540 (2018). This article reveals that paternal exercise training normalizes the detrimental effects of a paternal high-fat diet on sperm motility, the sperm miRNA profile and glucose tolerance in offspring.PubMed 
PubMed Central 

Google Scholar 
108.Murashov, A. K. et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 30, 775–784 (2016). This article demonstrates that high-volume, long-term paternal exercise results in offspring that are more susceptible to the negative effects of a high-fat diet on metabolism.CAS 
PubMed 

Google Scholar 
109.Gaskins, A. J., Colaci, D. S., Mendiola, J., Swan, S. H. & Chavarro, J. E. Dietary patterns and semen quality in young men. Hum. Reprod. 27, 2899–2907 (2012).CAS 
PubMed 
PubMed Central 

Google Scholar 
110.Hammoud, A. O. et al. Male obesity and alteration in sperm parameters. Fertil. Steril. 90, 2222–2225 (2008).PubMed 

Google Scholar 
111.Veron, G. L. et al. Impact of age, clinical conditions, and lifestyle on routine semen parameters and sperm kinematics. Fertil. Steril. 110, 68–75.e4 (2018).PubMed 

Google Scholar 
112.Campbell, J. M., Lane, M., Owens, J. A. & Bakos, H. W. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod. Biomed. Online 31, 593–604 (2015).PubMed 

Google Scholar 
113.Hammoud, A. O., Carrell, D. T., Gibson, M., Peterson, C. M. & Meikle, A. W. Updates on the relation of weight excess and reproductive function in men: sleep apnea as a new area of interest. Asian J. Androl. 14, 77–81 (2012).PubMed 

Google Scholar 
114.Sallmén, M., Sandler, D. P., Hoppin, J. A., Blair, A. & Baird, D. D. Reduced fertility among overweight and obese men. Epidemiology 17, 520–523 (2006).PubMed 

Google Scholar 
115.Fariello, R. M. et al. Association between obesity and alteration of sperm DNA integrity and mitochondrial activity. BJU Int. 110, 863–867 (2012).CAS 
PubMed 

Google Scholar 
116.Fullston, T. et al. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400 (2012).CAS 
PubMed 

Google Scholar 
117.Mitchell, M., Bakos, H. W. & Lane, M. Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353 (2011).PubMed 

Google Scholar 
118.Gómez-Elías, M. D. et al. Association between high-fat diet feeding and male fertility in high reproductive performance mice. Sci. Rep. 9, 18546 (2019).PubMed 
PubMed Central 

Google Scholar 
119.Watkins, A. J. et al. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl Acad. Sci. USA 115, 10064–10069 (2018).CAS 
PubMed 

Google Scholar 
120.Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).CAS 
PubMed 
PubMed Central 

Google Scholar 
121.Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).CAS 
PubMed 

Google Scholar 
122.Palmer, N. O., Bakos, H. W., Owens, J. A., Setchell, B. P. & Lane, M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am. J. Physiol. Endocrinol. Metab. 302, E768–E780 (2012).CAS 
PubMed 

Google Scholar 
123.Klastrup, L. K., Bak, S. T. & Nielsen, A. L. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol. Genet. Genomics 294, 1–11 (2019).CAS 
PubMed 

Google Scholar 
124.Zhang, Y., Shi, J., Rassoulzadegan, M., Tuorto, F. & Chen, Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 15, 489–498 (2019).PubMed 
PubMed Central 

Google Scholar 
125.Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).CAS 
PubMed 
PubMed Central 

Google Scholar 
126.Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl Acad. Sci. USA 112, 13699–13704 (2015).CAS 
PubMed 

Google Scholar 
127.Pogue, A. I., Clement, C., Hill, J. M. & Lukiw, W. J. Evolution of microRNA (miRNA) structure and function in plants and animals: relevance to aging and disease. J. Aging Sci. 2, 119 (2014).PubMed 
PubMed Central 

Google Scholar 
128.Grandjean, V. & Rassoulzadegan, M. [Epigenetic inheritance of the sperm: an unexpected role of RNA]. Gynécol. Obstét. Fertil. 37, 558–561 (2009).CAS 
PubMed 

Google Scholar 
129.Li, S., Xu, Z. & Sheng, J. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel) 9, 246 (2018).
Google Scholar 
130.Nätt, D. et al. Human sperm displays rapid responses to diet. PLoS Biol. 17, e3000559 (2019).PubMed 
PubMed Central 

Google Scholar 
131.Short, A. K. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl. Psychiatry 7, e1114 (2017).CAS 
PubMed 
PubMed Central 

Google Scholar 
132.Soubry, A. et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin. Epigenetics 8, 51 (2016).PubMed 
PubMed Central 

Google Scholar 
133.Potabattula, R. et al. Male obesity effects on sperm and next-generation cord blood DNA methylation. PLoS ONE 14, e0218615 (2019).CAS 
PubMed 
PubMed Central 

Google Scholar 
134.Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).CAS 
PubMed 

Google Scholar 
135.Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).CAS 
PubMed 
PubMed Central 

Google Scholar 
136.Sato, F., Tsuchiya, S., Meltzer, S. J. & Shimizu, K. MicroRNAs and epigenetics. FEBS J. 278, 1598–1609 (2011).CAS 
PubMed 

Google Scholar 
137.Denham, J., O’Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics 7, 717–731 (2015).CAS 
PubMed 

Google Scholar 

Via Source link

Most Popular

Safety Health News Provides information on HEALTH NEWS, HEALTH CARE, WOMEN’S HEALTH, KID’S HEALTH, MEN’S HEALTH, DIABETES & DEALS NEWS

All About information only. Please consult your Doctor for any illness.

Copyright © 2020 Safety Health News. Powered by Wordpress.

To Top